ebayで購入したPro Micro に環境センサモジュール「BME280」を接続し、温湿度・気圧を測定するプログラムを作成しました。BME280は、スイッチサイエンスや秋月電子などが販売されていますが、今回はebeyから購入しました。次に、購入した環境センサモジュール「BME280」を示します。
Pro Microと環境センサモジュール「BME280」の接続
Pro Microと環境センサモジュール「BME280」間は、I2Cインタフェースで接続します。次のように各ピンを接続します。左側のピン番号がBME280で右側のピン番号がPro Microです。環境センサモジュール「BME280」もいろいろなバージョンがあるようで、購入したBME280は4ピンのインタフェースを持ち、本来BME280が持つSPIインタフェースは使用できません。チップIDは「0x60」、I2Cアドレスは「0x76」となっています。
- VIN -> 3.3V
- GND -> GND
- SDA -> D2
- SCL -> D3
BME280による温湿度・気圧測定プログラムの作成
BME280による温湿度・気圧測定プログラムは「スイッチサイエンスのBME280公開リポジトリ」からダウンロードしました。
BME280.ino
#include <Wire.h> #define BME280_ADDRESS 0x76 unsigned long int hum_raw,temp_raw,pres_raw; signed long int t_fine; uint16_t dig_T1; int16_t dig_T2; int16_t dig_T3; uint16_t dig_P1; int16_t dig_P2; int16_t dig_P3; int16_t dig_P4; int16_t dig_P5; int16_t dig_P6; int16_t dig_P7; int16_t dig_P8; int16_t dig_P9; int8_t dig_H1; int16_t dig_H2; int8_t dig_H3; int16_t dig_H4; int16_t dig_H5; int8_t dig_H6; void setup() { uint8_t osrs_t = 1; //Temperature oversampling x 1 uint8_t osrs_p = 1; //Pressure oversampling x 1 uint8_t osrs_h = 1; //Humidity oversampling x 1 uint8_t mode = 3; //Normal mode uint8_t t_sb = 5; //Tstandby 1000ms uint8_t filter = 0; //Filter off uint8_t spi3w_en = 0; //3-wire SPI Disable uint8_t ctrl_meas_reg = (osrs_t << 5) | (osrs_p << 2) | mode; uint8_t config_reg = (t_sb << 5) | (filter << 2) | spi3w_en; uint8_t ctrl_hum_reg = osrs_h; Serial.begin(9600); Wire.begin(); writeReg(0xF2,ctrl_hum_reg); writeReg(0xF4,ctrl_meas_reg); writeReg(0xF5,config_reg); readTrim(); // } void loop() { double temp_act = 0.0, press_act = 0.0,hum_act=0.0; signed long int temp_cal; unsigned long int press_cal,hum_cal; readData(); temp_cal = calibration_T(temp_raw); press_cal = calibration_P(pres_raw); hum_cal = calibration_H(hum_raw); temp_act = (double)temp_cal / 100.0; press_act = (double)press_cal / 100.0; hum_act = (double)hum_cal / 1024.0; Serial.print("TEMP : "); Serial.print(temp_act); Serial.print(" DegC PRESS : "); Serial.print(press_act); Serial.print(" hPa HUM : "); Serial.print(hum_act); Serial.println(" %"); delay(1000); } void readTrim() { uint8_t data[32],i=0; Wire.beginTransmission(BME280_ADDRESS); Wire.write(0x88); Wire.endTransmission(); Wire.requestFrom(BME280_ADDRESS,24); while(Wire.available()){ data[i] = Wire.read(); i++; } Wire.beginTransmission(BME280_ADDRESS); Wire.write(0xA1); Wire.endTransmission(); Wire.requestFrom(BME280_ADDRESS,1); data[i] = Wire.read(); i++; Wire.beginTransmission(BME280_ADDRESS); Wire.write(0xE1); Wire.endTransmission(); Wire.requestFrom(BME280_ADDRESS,7); while(Wire.available()){ data[i] = Wire.read(); i++; } dig_T1 = (data[1] << 8) | data[0]; dig_T2 = (data[3] << 8) | data[2]; dig_T3 = (data[5] << 8) | data[4]; dig_P1 = (data[7] << 8) | data[6]; dig_P2 = (data[9] << 8) | data[8]; dig_P3 = (data[11]<< 8) | data[10]; dig_P4 = (data[13]<< 8) | data[12]; dig_P5 = (data[15]<< 8) | data[14]; dig_P6 = (data[17]<< 8) | data[16]; dig_P7 = (data[19]<< 8) | data[18]; dig_P8 = (data[21]<< 8) | data[20]; dig_P9 = (data[23]<< 8) | data[22]; dig_H1 = data[24]; dig_H2 = (data[26]<< 8) | data[25]; dig_H3 = data[27]; dig_H4 = (data[28]<< 4) | (0x0F & data[29]); dig_H5 = (data[30] << 4) | ((data[29] >> 4) & 0x0F); dig_H6 = data[31]; } void writeReg(uint8_t reg_address, uint8_t data) { Wire.beginTransmission(BME280_ADDRESS); Wire.write(reg_address); Wire.write(data); Wire.endTransmission(); } void readData() { int i = 0; uint32_t data[8]; Wire.beginTransmission(BME280_ADDRESS); Wire.write(0xF7); Wire.endTransmission(); Wire.requestFrom(BME280_ADDRESS,8); while(Wire.available()){ data[i] = Wire.read(); i++; } pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4); temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4); hum_raw = (data[6] << 8) | data[7]; } signed long int calibration_T(signed long int adc_T) { signed long int var1, var2, T; var1 = ((((adc_T >> 3) - ((signed long int)dig_T1<<1))) * ((signed long int)dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((signed long int)dig_T1)) * ((adc_T>>4) - ((signed long int)dig_T1))) >> 12) * ((signed long int)dig_T3)) >> 14; t_fine = var1 + var2; T = (t_fine * 5 + 128) >> 8; return T; } unsigned long int calibration_P(signed long int adc_P) { signed long int var1, var2; unsigned long int P; var1 = (((signed long int)t_fine)>>1) - (signed long int)64000; var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed long int)dig_P6); var2 = var2 + ((var1*((signed long int)dig_P5))<<1); var2 = (var2>>2)+(((signed long int)dig_P4)<<16); var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13)) >>3) + ((((signed long int)dig_P2) * var1)>>1))>>18; var1 = ((((32768+var1))*((signed long int)dig_P1))>>15); if (var1 == 0) { return 0; } P = (((unsigned long int)(((signed long int)1048576)-adc_P)-(var2>>12)))*3125; if(P<0x80000000) { P = (P << 1) / ((unsigned long int) var1); } else { P = (P / (unsigned long int)var1) * 2; } var1 = (((signed long int)dig_P9) * ((signed long int)(((P>>3) * (P>>3))>>13)))>>12; var2 = (((signed long int)(P>>2)) * ((signed long int)dig_P8))>>13; P = (unsigned long int)((signed long int)P + ((var1 + var2 + dig_P7) >> 4)); return P; } unsigned long int calibration_H(signed long int adc_H) { signed long int v_x1; v_x1 = (t_fine - ((signed long int)76800)); v_x1 = (((((adc_H << 14) -(((signed long int)dig_H4) << 20) - (((signed long int)dig_H5) * v_x1)) + ((signed long int)16384)) >> 15) * (((((((v_x1 * ((signed long int)dig_H6)) >> 10) * (((v_x1 * ((signed long int)dig_H3)) >> 11) + ((signed long int) 32768))) >> 10) + (( signed long int)2097152)) * ((signed long int) dig_H2) + 8192) >> 14)); v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * ((signed long int)dig_H1)) >> 4)); v_x1 = (v_x1 < 0 ? 0 : v_x1); v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1); return (unsigned long int)(v_x1 >> 12); }
BME280による温湿度・気圧測定プログラムの実行
作成した温湿度・気圧測定プログラムをPro Microに書き込み、実行すると、パソコン上で実行しているTeratermには次のような温湿度と気圧の測定値が表示されます。